Наши соц. сети

Назад

Коллоидные растворы

Холодный утренний туман, оседающий на землю, столб дыма над костром, взвешенные частицы в воде рек и озер — все это мы видели множество раз.
Нас постоянно окружают дисперсные системы

Понимание коллоидных систем важно для общего понимания образования гидроокиси железа в водоочистке и принципов фильтрации. Этот старый советский обучающий фильм отлично рассказывает о том, что такое коллоиды, как они образуются и взаимодействуют с окружающей средой. СМОТРИМ! Если смотреть не получается — читаем.

https://youtu.be/JR6qi6MuyLk

Они состоят из вещества в мелкораздробленом состоянии — дисперсной фазы и среды в которой эта фаза распределеа и которую называют дисперсионной средой.

Величина частиц и степень их дисперсности может быть различной. Сравнительно большие размеры частиц имеют грубодисперсные системы — взвеси и эмульсии.

В истинных растворах вещество находится в виде молекул или оинов распределенных равномерно среди молекул растворителя.

Частицы грубодисперсных систем хорошо видны в микроскоп. Например, молоко, представляющее эмульсию капелек жира в сыворотке, дым — это множество твердых частиц, взвешенных в воздухе.

Грубодисперсные системы неустойчивы и со временем дисперсная фаза отделяется от дисперсионной среды (выпадает в осадок).

По размеру частиц промежуточной положение между истинными растворами и взвесями занимают коллоидные растворы — золи.

Коллоидные частицы очень малы. И все же они могут состоять из сотен и тысяч молекул.

Свойства коллоидных растворов

Коллоидные частицы настолько малы, что не видны в обычный микроскоп. По внешнему виду коллоидный раствор нельзя отличить от истинного. Однако, если на освещенный коллоидный раствор посмотреть сбоку, то свет луча будет виден, как светлая дорожка, образовавшаяся от рассеивания света частицами. Это явление используют для распознавания коллоидных растворов.

В истинном растворе свет луча не виден, так как молекулы и ионы истинного раствора слишком малы и не рассеивают его.

В коллоидном — свет хорошо заметен. Он образует так называемый конус Тиндаля. Частицы коллоидных растворов под уадарами молекул растворителя совершают непрерывные хаотические перемещения. Это явление носит название Броуновского движения.

Из-за очень малых размеров коллоидные частицы имеют огромную суммарную поверхность.

Поверхность кубика с длинной ребра в 1 см составляет всего 6 квадратных сантиметров.. Но если 1 кубический сантиметр вещества раздробить на части объемом в 1 кубический микрон, то общая их поверхность увеличится в 10 тысяч раз. Поэтому и поглотительные свойства у коллоидных частиц проявляются значительно сильнее, чем у нераздробленного вещества.

Коллоидные частицы адсорбируют на своей поверхности катионы или анионы из окружающей среды. Адсорбированые ионы сообщают коллоидным частицам положительный или отрицательный заряд. В электрическом поле заряженные частицы коллоидных растворов приобретают направленное движение к полюсу противоположного знака. Это явление называют электрофарезом.

Одноименный заряд коллоидных частиц препятствует слипанию их друг с другом и придает коллоидному раствору относительную устойчивость.

Если в коллоидную систему добавить электролит, то заряд нейтрализуется ионами противоположного знака. Лишенные заряда коллоидные частицы слипаются в более крупные образования. Происходит коагуляция коллоида, которая обычно сопровождается выпадением осадка.

Некоторые коллоиды при коагуляции дают осадки, удерживающие большое количество воды. Их называют гидрофильными.

Другие, осаждаются в видео порошков, почти не увлекая за собой воду. Они называются гидрофобными.

Способы получения коллоидных систем

Коллоидные системы можно получать различными способами. При конденсационном способе молекулы нерастворимого вещества, например хлористого серебра (NaCl+AgNO3) слипаются, конденсируются в более крупные образования — коллоидные частицы. Другой пример — наливая раствор хлорного железа в горячую воду (FeCl3+3H2O) получаем золь гидроокиси железа Fe(OH)3+3HCl.

Дисперсионные способы получения коллоидов осуществляют размельчением вещества на различных дробилках, шаровых и других мельницах.

Коллоидные растворы можно получать и при помощи электрической други. Металл превращается в пар, а в результате конденсации образуются коллоидные частицы.

Макромолекулы

Некоторыми свойствами коллоидов обладают растворы высокомолекулярных веществ — белка, каучука, полиэтелена и многих другах. Они диспергируют до отдельных молекул, как вещества в истинных растворах, но сами эти молекулы настолько велики, что вполне соизмеримы с коллоидными частицами.

Такие молекулярные коллоиды могут быть получены непосредственным растворением. Растворению высокомолекулярных веществ предшествует набухание и образование студнеобразной массы — геля. При набухании студни поглощают ту или иную жидкость из окружающей среды и сильно увеличиваются в объеме, что приводит к огромному повышению давления на стенки сосуда.

Студни обладают рядом свойств твердого тела. Они легко режутся, сохраняя первоначальную форму.

В студнях химические реакции протекают своеобразно. Нерастворимые продукты реакции осаждаются не сплошной массой, а в виде концентрических колец. Так называемых колец Лизеганга.

 

Дисперсные системы в природе и технике

Вещества в коллоидном состоянии являются основой органической жизни на земле. Протоплазма любой живой клетки — это сложная коллоидная система. Мышечные ткани, хрящи, клеточные ткани растений, оболочки эритроцитов — тоже разновидности студней.

Коллоиды почвы играют большую роль в корневом питании растений. Адсорбированные на поверхности частиц почвы ионы калия, кальция и других элементов, в результате ионного обмена переходят в почвенный раствор и всасываются корневой системой.

Вещества в коллоидном состоянии принимают участие в образовании многих минералов:

  • агата
  • малахита
  • мрамора

Некоторые драгоцнные камни, например жемчуг представляют собой колоидную систему, где дисперсионной средой является твердое тело — углекислый кальций, а дисперсной фазой — капельки воды. Окраска драгоценных камней: рубинов, изумрудов, сапфиров зависит от присуствия в них небольших количеств золей тяжелых металлов.

Еще в глубокой древности человек использовал коллоидные процессы. Египтяне забивали в щели скал деревянные клинья. Поливали их водой. Древесина набухала, создавалось огромное давление, которое разрушало самые твердые скальные породы.

Процессы коагуляции коллоидов применяют для очистки природной воды. В бассейн отстойник добавляют электролит и коллоиды осаждаются в виде хлопьев, которые задерживает песчаный фильтр.

Мели и наносы в устьях рек образуются под действием морской воды, приводящие к коагуляции коллоидных частиц, находящихся в реке.

Сегодня с коллоидными процессами связаны важнейшие отрасли химической промышленности:

  • производство искусственного волокна
  • раличных клеящих веществ
  • синтетического каучука
  • и многих других химических продуктов

Знакомые уже нам явления электрофареза используют в работе электрофильтров — дымоуловителей.

Адсорбционные свойства коллоидных частиц положены в основу процесса флотационного обогащения руд. Частицы пустой породы гидрофильны, то есть удерживают на своей поверхности молекулы воды, а частицы руды при добавлении некоторых химических веществ приобретают гидрофобные — водоотталкивающие свойства. При продувании через эту смесь воздуха несмачиваемые частички руды поднимаются на поверхность, а пустая порода опускается на дно.

Важные пищевые продукты:

  • простокваша
  • кефир
  • творог
  • желе
  • джемы
  • и другие

тоже коллоидные системы — студни. Большинство окружающих нас предметов:

  • бумага,
  • сплавы металлов,
  • цветные стекла,
  • пластмассы,
  • натуральные и искусственные ткани

содержат вещества в коллоидном состоянии.

Широко распространены и грубодисперсные системы — эмульсии:

  • пены
  • суспензии
  • аэрозоли

Системы состоящие из двух взаимнонесмешивающихся жидкостей, например воды и какого-либо масла при тщательном и длительном перемешивании образуют эмульсии.

Эмульсии широко распространены в природе. Это и сырая нефть и млечный сок растений — каучуконосов и многое другое.

Если дисперсная среда — жидкость, а дисперсная фаза — газ образуется дисперсная система, называемая пеной. Устойчивость пен зависит от прочности пленок, разделящих пузырьки газа. При затвердевании пленок образуются устойчивые твердые пены: пемза, вулканическтий туф.

К твердым пенам относятся и такие искусственные материалы, как пенопласт, поролон, микропористая резина.

Устойчивые пены применяют и при тушении пожаров. Пена, содержащая углекислый газ плотно окутывает горящий предмет, преграждая доступ кислороду. Горение прекращается.

Дисперсной фазой могут быть и твердые вещества. Такие системы называют суспензиями. К ним относят различные краски, цементный раствор, бетон.

Облака, туманы, представляют собой аэрозоли. Дисперсные системы образованные жидкими или твердыми частицами. Аэрозоли нашли широкое применение в быту и технике. Например, топливо в цилиндре двигателя внутреннего сгорания подается в виде аэрозоля — смеси мельчайших капелек бензина с воздухом.

От степени дисперсности вещества зависит скорость протекания химических реакций. При обжиге мелкораздробленное вещество удерживает во взвешенном состоянии поток воздуха. Образуется кипящий слой, в котором газ омывает каждую частицу со всех сторон, а это ускоряет реакцию во много раз.

Как видим дисперсные системы широко распространены в природе, имеют большое значение в народном хозяйстве и нашей повседневной жизни. Их огромное множество. Мы же сейчас познакомились лишь с некоторыми из них.